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Abstract     19 

Measurements of global terrestrial solar radiation (Rs) are commonly recorded in 20 

meteorological stations. Daily variability of Rs has to be taken into account for the 21 

design of photovoltaic systems and energy efficient buildings. Principal components 22 

analysis (PCA) was applied to Rs data recorded at 30 stations in the Mediterranean 23 

coast of Spain. Due to equipment failures and site operation problems, time series of Rs 24 

often present data gaps or discontinuities. The PCA approach copes with this problem 25 

and allows estimation of present and past values by taking advantage of Rs records from 26 

nearby stations. The gap infilling performance of this methodology is compared with 27 

alternative conventional approaches. A new method was also developed for Rs 28 

estimation if previous measurements are not available. Four principal components 29 

explain 66% of the data variability with respect to the average trajectory. By means of 30 

multiple linear regression, it was found that this variability can be fitted according to the 31 

latitude, longitude and altitude of the station where data were recorded from. Additional 32 

geographical or climatic variables did not increase the predictive goodness-of-fit. The 33 

resulting models allow the estimation of daily Rs values at any location in the area 34 

under study. The proposed methodology for estimating Rs based on geographical 35 

parameters would be of interest to design solar energy systems and to select their best 36 

location.  37 

 38 

 39 

Keywords: solar radiation, missing data estimation, PCA, multivariate statistical 40 

monitoring 41 
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Introduction   44 

Solar radiation plays a key role in evaporation, plant photosynthesis or crop growth and 45 

productivity [1-4]. In architecture, accurate estimates of long-term global solar radiation 46 

are required for the design and development of energy efficient buildings [5,6]. Solar 47 

radiation is also essential in biophysical models for risk assessment of forest fires, in 48 

hydrological simulation models of natural processes [7], in environmental and 49 

agrometeorological research as well as in atmospheric physics [8]. Nonetheless, the 50 

major interest of measuring solar radiation is for the simulation and design of solar 51 

energy systems [9].  52 

 53 

The most common solar radiation measurements recorded in meteorological stations 54 

correspond to total radiation on a horizontal surface, Rs, also called global terrestrial 55 

solar radiation, which is normally given on an hourly or daily basis [6]. These data are 56 

required for the design of photovoltaic applications in remote or isolated areas where no 57 

connection to an electrical supply grid is available, for instance in rural or mountainous 58 

areas, natural parks, small islands and developing countries in general [10-14]. In these 59 

places, the daily Rs variability has to be taken into account for the design of 60 

photovoltaic systems in order to guarantee enough power generation for the essential 61 

electric devices [15]. In developed countries, solar energy systems are frequently 62 

implemented in buildings for water heating or electric power supply. The design of 63 

these systems is also based on Rs measurements. However, in many applications of 64 

solar energy, especially in the aforementioned isolated areas, projects are not supported 65 

by the required Rs data at the place of interest. Actually, solar radiation is measured at 66 

relatively few weather stations in comparison to other variables such as temperature or 67 
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relative humidity (RH). This is generally due to the high cost, maintenance and 68 

calibration requirements of the measuring equipment [9,10,12,16,17].  69 

 70 

Although suitable weather records have become more and more available in recent 71 

years, data reliability and quality is another problem. Even in automatic stations where 72 

solar radiation is measured, data records often lie outside the expected range [3-5] and 73 

are erroneous because of sensor calibration problems. According to Muneer et al. [9], 74 

another cause of errors is site operation problems such as instrument proximity to 75 

shading elements, electrical and magnetic fields, weather elements as well as bird or 76 

insect activity. Erroneous data need to be discarded, and equipment failures also cause 77 

missing data. As a result, time series of Rs often present data gaps or discontinuities.  78 

 79 

One alternative to cope with the lack of accurate Rs measurements is to use 80 

mathematical predictive models relying on climatic inputs. Several empirical, numerical 81 

and physically-based models have been proposed for Rs estimation based on different 82 

input combinations. They differ in sophistication from simple empirical equations based 83 

on common climatic data to more complex numerical models involving high 84 

computational costs and relying on numerous inputs. The most frequent inputs are 85 

sunshine duration, extraterrestrial radiation, mean temperature, maximum temperature, 86 

soil temperature, RH, number of rainy days, altitude, latitude, total precipitation, 87 

cloudiness, and evaporation [16]. Among the simplest methods for estimating solar 88 

radiation data, Hargreaves and Samani [18], Bristow and Campbell [19] and Allen [20] 89 

propose equations relying on maximum and minimum temperatures as well as on 90 

extraterrestrial radiation. These approaches, modified by other authors [17], take into 91 

account implicitly the geographical information of the studied locations by including 92 
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theoretical extraterrestrial radiation values based on latitude, day of the year, sunset 93 

hour angle and relative distance earth-sun. 94 

 95 

As an alternative to conventional approaches, artificial neural networks (ANNs) have 96 

been successfully applied for solar radiation estimation [1,2,5,8,10-13,21-31]. 97 

Techniques based on artificial intelligence have also been proposed particularly for 98 

isolated areas [14]. However, only a small part of these works present models fed by 99 

few easily measurable inputs such as temperature and/or RH records [11,28,29].  100 

 101 

The development of Rs estimation methods not relying on local climatic records turns 102 

into a task of great relevance because even the simplest climatic parameters are not 103 

available in many cases given the limited number of available automatic weather 104 

stations. One approach hardly tackled in literature would be to develop models relying 105 

exclusively on exogenous Rs inputs from nearby locations with similar climatic 106 

conditions. These models are of relevant interest given the aforementioned ubiquitous 107 

problems such as data scarcity, equipment failures, maintenance and calibration as well 108 

as physical and biological constraints.  109 

 110 

Data of Rs recorded daily at different stations can be regarded as a multivariate time 111 

series. Such type of data is common in the monitoring and control of industrial 112 

processes. For example, chemical reactors are usually monitored by means of electronic 113 

sensors that record the temperature at different points of the process. In this context of 114 

multivariate statistical process control (MSPC), principal components analysis (PCA) is 115 

a useful technique for process monitoring and diagnosis because it allows data 116 

estimation in case of faulty sensors [32]. PCA is one of the multivariate techniques 117 
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wider spread [33]. In a recent study, PCA was used for modeling the spatial data 118 

variability from a set of RH sensors located at different positions [34]. The same PCA 119 

approach was applied here for the analysis of Rs values measured daily at 30 weather 120 

stations. PCA copes with gap infilling by taking advantage of Rs records from nearby 121 

stations. Multiple linear regression (MLR) was used to identify which geographical or 122 

climatic parameters are the ones that best explain the differences in Rs measurements 123 

recorded at the 30 stations. Once identified the key variables, a new methodology is 124 

proposed to estimate Rs when, apart from exogenous measurements, these parameters 125 

are also available.  126 

 127 

Materials and methods 128 

 129 

1. Data characterization 130 

The database analyzed here consisted of daily Rs values from 30 weather stations 131 

located on the Mediterranean coast of Spain (Table 1). Data were obtained from the 132 

Valencian Institute of Agricultural Research (IVIA). The dataset was structured as a 133 

matrix of 30 rows (stations) by 2920 variables (in columns). Each variable corresponds 134 

to one day in the 8-year period under study (January 2000 to December 2007). The 135 

original Rs series contained missing data. In order to assess different procedures for gap 136 

infilling, it is convenient to work with a complete data matrix. Thus, all variables in the 137 

initial Rs dataset containing missing data were discarded, resulting a complete matrix 138 

with 1203 variables. Fig. 1 displays the average Rs for these 1203 days. A clear periodic 139 

trend can be observed due to Rs annual seasonability.  140 

 141 

[FIGURE 1 NEAR HERE] 142 
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2. PCA models 143 

2.1. PCA configuration and data pretreatment 144 

Principal components are directions of maximum data variance obtained as 145 

linear combinations of the original variables. The projections of observations (weather 146 

stations, in this case) over these directions are called scores. The variable containing 147 

these projections over the first principal component (PC1) is called score vector (t1). 148 

Similarly, t2 contains the projections over PC2, and so on. The contributions of 149 

variables in the formation of a given component are called loadings, being p1 the 150 

loadings in the formation of PC1.  151 

 152 

The software SIMCA-P 10.0 (Umetrics AB, Malmö, Sweden) was used to carry out all 153 

PCA models. It uses the NIPALS algorithm [35] which extracts components one by 154 

one. Given a matrix X, this algorithm calculates t1 and p1, resulting a residual matrix 155 

E1 (eq. 1). PC2 is obtained by applying the NIPALS algorithm to E1. Thus, PC2 is the 156 

direction that explains the maximum data variability of E1 and remains orthogonal to 157 

PC1. Next, a residual matrix E2 is calculated (eq. 1). This procedure can be conducted 158 

sequentially until E=0.  159 
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Each row of the Rs dataset is a time series that reflects the evolution of Rs recorded at 161 

one station. In the context of MSPC, such time series is often called ‘trajectory’ because 162 

of the trend observed when the parameter is plotted versus time. If a new row is 163 

obtained by averaging the values of each column, it could be regarded as the mean 164 

trajectory. In order to highlight the relationships (i.e. similarities and dissimilarities) 165 
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among stations, data were mean-centered prior to PCA by subtracting the mean value of 166 

each column. As a result, the average of all centered variables becomes null. In the 167 

MSPC of batch chemical processes, the idea of subtracting the mean trajectory prior to 168 

PCA was first proposed by Nomikos and MacGregor [36]. The same methodology has 169 

also been successfully applied by other works [37,38]. Variables are also scaled to 170 

unitary variance prior to PCA when the variance among them is very different [38], but 171 

this is not the case here.  172 

 173 

2.2. Number of relevant PCs and outlier detection 174 

Different methods can be applied to decide how many components should be extracted 175 

(i.e. the value of k in eq. 1) for the purpose of modeling the systematic data variability 176 

of X [33]. Further components not calculated are included in a matrix of errors (Ek-1 in 177 

eq. 1) that is assumed to account for random variation. One criterion implemented in the 178 

software SIMCA-P 10.0 is cross-validation [39]. It considers that one PC does not 179 

provide relevant information if it changes significantly when several observations are 180 

randomly removed.  181 

 182 

Applying PCA to all Rs data assumes that the relationships among stations are 183 

basically maintained all the year round. In order to test this hypothesis, the Rs dataset 184 

was split in two subsets of about equal size, one containing those variables with an 185 

average value higher than 200 and another one containing the remaining variables. 186 

These subsets will be referred to as Rs>200 and Rs<200, respectively. The value of 200 187 

is approximately the average value of all data in the Rs matrix (horizontal dotted line in 188 

Fig. 1). Next, two new PCA models were fitted, one with each submatrix. Results from 189 

both models were compared.  190 
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 191 

A scatterplot of the scores corresponding to two different components is referred 192 

to as a score plot. The score plot corresponding to PC1 and PC2 (i.e., t2 vs. t1), referred 193 

to here as the PC1/PC2 plot, usually highlights the basic similarities and dissimilarities 194 

among observations. Score plots with different combinations of PCs were visually 195 

inspected in order to detect outliers as well as to identify stations with a similar 196 

performance. The distance of observations to the PCA model was also checked.  197 

 198 

2.3.   PCA infilling approach for Rs estimation 199 

Missing data due to sensor failures is a problem often encountered in MSPC. Different 200 

approaches have been proposed for PCA to deal with incomplete observations [40,41]. 201 

One of these algorithms is implemented in the software SIMCA-P 10.0 [42]. Starting 202 

from the complete Rs matrix, three new ones were obtained containing 5%, 10% and 203 

15% randomly distributed gaps. In the four cases, data were mean-centered prior to 204 

PCA. After obtaining the score and loading vectors for each PC, they were used to 205 

reconstruct the X matrix (eq. 1). This procedure was conducted using Matlab version 206 

7.4.0 (MathWorks Inc., Natick, MA, USA), considering an increasing number of PCs. 207 

Next, in order to assess the accuracy of the gap infilling method, the estimated missing 208 

values were compared with the original ones.  209 

 210 

Four additional methods were tested for gap infilling: (i) by adopting as Rs 211 

estimations for a given station, the Rs records from the nearest station (1-neighbor); (ii) 212 

by obtaining the Rs average of two nearest stations with a similar altitude (2-neighbor); 213 

(iii) by adopting the Rs values from the nearest station in the score plot for PC1/PC2 (1-214 

neighbor-SP); (iv) by assigning the Rs average of two neighboring stations in the score 215 
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plot for PC1/PC2 (2-neighbor-SP). These methods will be referred to hereafter with the 216 

name indicated within brackets. In order to assess their efficiency for gap infilling, they 217 

were applied to the matrices with 5%, 10% and 15% of gaps. The neighboring stations 218 

in the 1- and 2-neighbor-SP methods were established only according to the score plot 219 

of the complete matrix.  220 

 221 

2.4.   Rs estimation from geographic parameters 222 

Principal component regression (PCR) was used to study if score vectors can be 223 

predicted according to geographic and climatic parameters. The proposed methodology 224 

comprises two steps. First, score and loading vectors of the k relevant PCs were 225 

extracted from the Rs matrix. Second, step-wise MLR was applied to fit each score 226 

vector according to the following independent variables: latitude, longitude, altitude, 227 

minimum distance to the sea, temperature (average, maximum, minimum), RH, wind 228 

speed, Gorezynski continentality index [43] and cumulated rain. Climatic parameters 229 

correspond to the average values for the 1203 days of study. The software Statgraphics 230 

plus 5.1 (StatPoint Technologies Inc., Warrenton, VA, USA) was used to conduct all 231 

regression models. 232 

 233 

Once obtained the k predictive equations, they might be applied to estimate the 234 

t1, t2, ... tk scores of a new station according to its geographic and climatic data. Next, 235 

the Rs estimation for the j-th day would be obtained based on these predicted scores and 236 

the loadings calculated in the first step for the j-th day (eq. 2), being k the number of 237 

relevant PCs and µj the j-th column average of the Rs matrix. 238 

 239 

kjkjjjjs pt...ptptμR ˆˆˆ)( 2211 ++++=     (2) 240 
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 241 

In order to assess the performance of the proposed method, MLR equations were 242 

applied using the geographic and climatic data of each station and, next, the Rs matrix 243 

was reconstructed by applying eq. 2 for the 1203 days. Predicted values were compared 244 

with the original ones. The 1- and 2- neighbor-SP approaches described in the previous 245 

section were also tested. The first one consisted of adopting for a given station, the Rs 246 

records from the station with most similar t1 and t2 scores. Similarly, the estimation 247 

according to the 2-neighbor-SP method was obtained as the Rs average of the two 248 

nearest stations in the PC1/PC2 score plot. The t1 and t2 scores of the target station were 249 

previously estimated by applying the MLR equations based on its geographic and 250 

climatic parameters. 251 

 252 

3   Performance indicators 253 

Several error parameters were calculated to assess the performance accuracy of the 254 

proposed estimation methods. The average absolute relative error (AARE), the mean 255 

absolute error (MAE) and the mean squared error (MSE), which are commonly used in 256 

time series analysis, were obtained according to eqs. 3, 4 and 5, respectively, being xi 257 

the observed Rs value, ix̂  the prediction, and n the number of missing data randomly 258 

created in the Rs matrix.  259 
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Results and discussion 264 

1. PCA of the Rs matrix: relevant PCs and outlier detection 265 

Three PCA models were carried out, one with all 1203 variables of the Rs dataset, 266 

another using the set of Rs>200 variables and a third one with Rs<200. In the three 267 

models, the score plot for PC3/PC4 reveals that station s19 presents abnormal values in 268 

both components (figures not shown). This station is the most northern one, which 269 

might explain its different performance. However, the position of s19 in the PC1/PC2 270 

score plot is not abnormal (Fig. 2). Taking into account that PC3 and PC4 provide 271 

relevant information, station s19 was discarded and the three models were repeated. A 272 

summary overview of these six models is shown in Table 2.  273 

 274 

The software SIMCA-P 10.0 considers that a certain component explains 275 

systematic data variability if the goodness-of-fit for that component obtained by cross-276 

validation (Q2) is higher than a certain threshold [42]. In five of the six models, the 277 

cross-validation criterion is satisfied up to PC4 (Table 2). In order to further investigate 278 

the number of relevant PCs, it was checked that the t1 score vector obtained from the 279 

Rs<200 model with 29 stations is strongly correlated with that from the Rs>200 model 280 

(r = 0.964, p < 0.0001). The correlation is also statistically significant for the t2, t3 and 281 

t4 vectors (p < 0.0001) but not in the case of t5 (r = 0.267, p = 0.161) nor t6 (r = 0.291, 282 

p = 0.125). Again, this result suggests that 4 components should be used to describe the 283 

systematic variability of the Rs matrix.  284 

 285 

In the Rs>200 model with 29 observations, station s27 has abnormal values of 286 

PC5 and PC7 and appears as an outlier in the PC5/PC7 score plot (Fig. not shown). The 287 

same result was obtained with the Rs<200 model and the one with 1203 variables. The 288 
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Rs pattern of station s27 is slightly different to the rest probably because it has the 289 

highest distance to the sea and the most continental climate. Actually, it presents the 290 

lowest average and minimum temperature among the 30 stations. Nonetheless, s27 was 291 

not discarded because its performance is not abnormal in the four relevant PCs. 292 

Different score plots were visually inspected, but no additional outliers were identified.  293 

 294 

2. Similarities among stations based on the score plots 295 

R2
X

 is usually called goodness-of-fit because it indicates how good is a given PC 296 

to fit the observed values. PC1 explains about 37% of the mean-centered data variability 297 

(Table 2). The coordinate position of stations in the PC1/PC2 score plot, if properly 298 

rotated, is strikingly similar to their geographic position (Fig. 2). The rotation was 299 

achieved by plotting (-2 t1 + t2) vs (- t1 - 2t2).  300 

 301 

[FIGURE 2 NEAR HERE] 302 

 303 

In order to assess if the differences among stations are relevant in practice, the 304 

average Rs value was calculated for all stations. Averages follow approximately a 305 

normal distribution, being 225.3 the maximum value (station s29) and 187.4, the 306 

minimum value (station s6). Thus, the average Rs of s29 is 20.2% higher than in the 307 

case of station s6, which highlights the importance of choosing correctly the location for 308 

a solar energy system. It was found that average Rs values were correlated with t1 309 

scores (r = 0,756). Thus, PC1 will highlight which stations provide higher or lower 310 

values than the average trajectory. Further PCs will describe changes in the shape with 311 

respect to the mean trajectory. Moreover, t1 scores are also correlated with latitude (r = 312 

- 0,939), as reflected in Fig. 2. The PC3/PC4 score plot for the Rs<200 and Rs>200 313 



 14 

models are quite similar (Fig. 3), which again indicates that PC3 and PC4 provide 314 

relevant information.  315 

 316 

[FIGURE 3 NEAR HERE] 317 

 318 

The PCA model with 4 components accounts for about 66% of the mean-319 

centered data variability (Table 2). Thus, the PC1/PC2 and PC3/PC4 score plots will 320 

highlight the most relevant similarities and dissimilarities. Stations close to each other 321 

in both plots will present a similar performance, i.e., a trajectory of Rs recordings with a 322 

similar average value and shape. After visually inspecting both score plots (Figs. 2 and 323 

3), four clusters of stations with a similar Rs pattern were established: cluster A 324 

(stations s1, s4, s6, and s15), B (s2, s5, s9, and s10), C (s26, s29, and s30) and D (s11, 325 

s12, and s14). They basically differ in latitude (Fig. 2) while C is the cluster with 326 

highest altitude, which implies a more continental climate. Trajectories of stations 327 

belonging to the same clusters were averaged, centered with respect to the mean 328 

trajectory and smoothed using a moving average of order 50 (Fig. 4). Cluster C yields 329 

the trajectory with highest average values and, moreover, its pattern is somewhat 330 

different. This distinctive performance is basically explained by PC2. Clusters C and D 331 

correspond to southern stations and their Rs values are higher than clusters A and B, 332 

which reflects the negative correlation between latitude and Rs. Fig. 3 shows that 333 

stations in clusters A and B are discriminated by PC4 which implies that their 334 

trajectories are somewhat different, as reflected by Fig. 4. 335 

 336 

[FIGURE 4 NEAR HERE] 337 

 338 
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3. Gap infilling results 339 

Taking into account that station s19 is an outlier, it was disregarded for the gap infilling 340 

study. PCA was applied to the complete Rs matrix (29 stations by 1203 variables) and 341 

to the three matrices containing 5%, 10% and 15% of missing data (i.e., 1744, 3489 and 342 

5233 gaps, respectively). Table 3 shows that R2
X and Q2 values of these models are 343 

nearly the same regardless of the amount of missing data. Despite the presence of gaps, 344 

PC4 satisfies the cross-validation criterion. MSE, MAE and AARE (eqs. 3 to 5) were 345 

calculated by comparing discarded data with the predictions obtained by eq. 1 with an 346 

increasing number of PCs. In the complete Rs matrix, error parameters become null 347 

using 28 components (see Fig. 5), which implies a perfect fit if the maximum number of 348 

possible PCs is used. Only a slight increase of MAE and AARE is observed as the 349 

amount of missing data increases. Fig. 5 also shows that PCA models built with 4 or 5 350 

PCs lead to similar errors. Additional components just provide a slight decrease of the 351 

error indicators, which is consistent with the cross-validation results suggesting that 352 

only four PCs are relevant. 353 

 354 

[FIGURE 5 NEAR HERE] 355 

 356 

Missing Rs data were also estimated according to four alternative methods based 357 

on neighbor assignment. This assignment presents in some cases several valid options 358 

because the number of available stations is limited and there is not always a single 359 

optimum choice. Therefore, only the complete matrix was considered to provide the t1 360 

and t2 scores used to establish the neighbor assignment, which was the same for the 3 361 

gap sizes. As observed in Table 4, error indicators are higher if the percentage of 362 

missing data increases. After PCA and 2-neighbor-SP, the best results correspond to the 363 

2-neighbor procedure (Table 4) which presents average indicators slightly better than 364 
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the 1-neighbor and 1-neighbor-SP methods. As could be expected, the approaches based 365 

only in the information of one neighboring station are worse than those taking into 366 

account data from two neighbors.  367 

 368 

4. Rs estimation from geographical data 369 

Score and loading vectors of PC3 and PC4 were extracted from the Rs matrix with 29 370 

stations and 1203 variables. Station s19 was disregarded because it becomes an outlier 371 

in both PCs but not for the previous components. Thus, all stations were considered to 372 

obtain score and loading vectors of PC1 and PC2. 373 

 374 

MLR was applied next to determine if t1 is correlated with latitude (φ), 375 

longitude (τ), altitude (z), and distance to the sea. The same study was conducted with 376 

t2, t3, and t4. After trying several alternative models, it was decided to consider also two 377 

indicator variables and their interactions. Iz>400 takes the value 1 for the 5 stations with 378 

an altitude higher than 400 m and zero otherwise. The indicator variable Iφ<38.7 takes the 379 

value 1 for stations that satisfy the condition φ < 38.7.  380 

 381 

t1 = 22403 – 579.1 ϕ + 363.1 Iϕ<38.7 – 185.6 τ + 0.58 z    (6) 382 

t4 =  7932 – 208.0 ϕ – 333.3 Iϕ<38.7 + 676.9 τ  – 341.8 Iz>400   (7) 383 

t2 = –16846 + 421.4 ϕ – 540.7 Iϕ<38.7 (ϕ–39) + 1.3 z    (8) 384 

t3 = –38125 +968.1 ϕ –1611.9 Iϕ<38.7 (ϕ–39.1) –181 τ    (9) 385 

 386 

All regression coefficients of the best predictive equations are statistically 387 

significant (p ≤ 0.002 for eq. 6, p ≤ 0.0002 for eq. 7, p < 0.003 for eq. 8, and p < 0.009 388 

for eq. 9). It was also checked that residuals followed approximately a normal 389 
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distribution and no outliers were detected. Longitude is significantly correlated with 390 

altitude (r = 0.492, p = 0.006) as well as with latitude (r = -0.494, p = 0.0055). Given 391 

the correlation among predictive variables, trying to interpret the effect of each 392 

parameter in eqs. 6 to 9 might be misleading.  393 

 394 

Coefficients of determination are the following: 0.983 (eq. 6), 0.901 (eq. 7), 395 

0.785 (eq. 8) and 0.900 (eq. 9). These high values suggest that a considerable amount of 396 

the centered Rs data variability depends on the geographical position of the station. Fig. 397 

6 shows that t1 and t2 scores predicted from eqs. 6 and 8 based on geographical 398 

information are similar to those originally obtained from the Rs matrix. Predictive MLR 399 

equations for t5 and t6 were also tried using geographic and climatic variables, but a 400 

very poor goodness-of-fit was obtained. 401 

 402 

[FIGURE 6 NEAR HERE] 403 

 404 

It was found that none of the climatic variables entered in the MLR models. 405 

Thus, latitude, longitude and altitude, which are parameters readily available for any 406 

location in the region under study, are enough to predict the four relevant scores. Eqs. 6 407 

to 9 are only valid for the Rs estimation in weather stations located on the 408 

Mediterranean coast of Spain with similar geographical characteristics as those in Table 409 

1. Nevertheless, the proposed methodology could be applied to any kind of climatic 410 

conditions.  411 

 412 

The PCR approach was applied to reconstruct the Rs matrix. PCR using four 413 

components provides more accurate estimations than the 1- and 2-neighbor-SP 414 
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approaches, which were also tested (Table 5). Error indicators of 1-neighbor-SP are 415 

similar as those of PCR using only one component, which suggests that this method 416 

would not be recommended. By contrast, errors of 2-neighbor-SP and PCR with 3 417 

components are similar. Again, these results indicate that it would be better to use data 418 

from two neighboring stations instead of just one. 419 

 420 

Conclusions 421 

Choosing the right location for a solar energy system is a key factor for 422 

maximizing the power generation. Moreover, the estimation of daily Rs values is of 423 

interest for the design of photovoltaic systems and energy efficient buildings. Available 424 

Rs data are useful for this purpose, particularly if they are recorded from nearby weather 425 

stations. PCA was applied to Rs data recorded at 30 stations in the Mediterranean coast 426 

of Spain. Four principal components account for the systematic data variation and 427 

explain about 66% of the mean-centered Rs variability. By means of MLR, it was found 428 

that the latent variables associated to the four relevant PCs can be predicted according to 429 

latitude, longitude and altitude. Climatic variables did not increase the predictive 430 

goodness-of-fit. Based on the results, a new methodology is proposed to estimate daily 431 

Rs values at any location in the region under study when only local geographical 432 

parameters are available. The proposed method exhibits a higher accuracy than simpler 433 

procedures using data from neighboring stations. 434 

 435 

Time series of Rs often present data gaps or discontinuities. In practice, this 436 

problem is often solved by adopting the measurements from neighboring stations. The 437 

PCA approach characterizes the similarities among weather stations and also allows 438 

estimation of present and past Rs values. The proposed method for gap infilling is more 439 
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accurate than four alternative procedures also tested. The statistical methodology 440 

applied here is commonly used in the context of MSPC, particularly in chemical 441 

processes, but as far as we know this is the first work that applies such methodology for 442 

the estimation of solar radiation.  443 

 444 

Mathematical notation 445 

X matrix (upper case, bold) 

t vector, i.e. column matrix (lower case, bold) 

pT transposed vector, i.e. row matrix (lower case, bold) 

k scalar (lower case, italicized) 

 446 
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Figure captions 558 

 559 

Fig. 1. Rs values averaged for the 30 stations. Gaps correspond to days with missing 560 

data for at least one station. 561 

 562 

Fig. 2. Left: Map of the eastern coast of Spain (provinces of Alicante, Valencia and 563 

Castellón) indicating the location of the 30 weather stations (codes as in Table 1). Right: 564 

rotated score plot of PC1/PC2 obtained from the initial Rs matrix (30 stations by 1203 565 

variables). 566 

 567 

Fig. 3. Score plot of PC3/PC4 from the Rs>200 model (filled triangles) and Rs<200 568 

(empty triangles). Station s19 was disregarded. Both plots were slightly rotated to 569 

achieve a better fit between scores corresponding to the same station 570 

 571 

Fig. 4. Rs centered trajectories (i.e. difference with respect to the mean trajectory) 572 

averaged for stations with a similar performance (A: s1-s4-s6-s15, B: s2-s5-s9-s10, C: 573 

s26-s29-s30, D: s11-s12-s14). 574 

 575 

Fig. 5. Error parameters showing the gap infilling performance of PCA for different gap 576 

sizes with an increasing number of PCs. 577 

 578 

Fig. 6. Comparison between t1 and t2 scores from the Rs matrix with those obtained by 579 

applying eqs. 6 and 8 taking into account the geographical data of stations. 580 

 581 

582 
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Table 1  583 

Geographical parameters of the 30 weather stations. z : altitude (m) with respect to sea 584 

level; ϕ : latitude (degrees); τ : longitude (degrees). 585 

 586 

Station ca z ϕ  τ b   ca z ϕ  τ b   

Benavites 1 8 39.7333 0.2150  Dénia-Gata 16 102 38.7939 -0.0836 

Tavernes de Valldigna 2 15 39.0964 0.2367  Vila Joiosa 17 138 38.5294 0.2553 

Catral 3 27 38.1544 0.8042  Pedralba 18 200 39.5678 0.7164 

Sagunt 4 33 39.6492 0.2925  San Rafel del Riu 19 205 40.5956 -0.3703 

Carcaixent 5 35 39.1167 0.5047  Altea 20 210 38.6056 0.0775 

Vila Real 6 42 39.9333 0.1000  Monforte del Cid 21 244 38.3997 0.7289 

Ondara 7 49 38.8197 -0.0075  Llíria 22 250 39.6919 0.6253 

Moncada 8 58 39.5877 0.3992  Turís 23 299 39.4006 0.6836 

Vilanova de Castelló 9 58 39.0667 0.5228  Cheste 24 323 39.5217 0.7417 

Carlet 10 66 39.2264 0.5459  Agost 25 345 38.4278 0.6433 

Almoradí 11 74 38.0908 0.7714  Villena 26 495 38.5967 0.8733 

Pilar de la Horadada 12 77 37.8700 0.8103  Campo Arcís 27 584 39.4344 1.1608 

Elx 13 86 38.2667 0.7000  El Pinós 28 606 38.4286 1.0594 

Orihuela 14 99 38.1828 0.9536  Camp de Mirra 29 627 38.6803 0.7717 

Vall d'Uixó 15 100 39.7975 0.2272  Castalla 30 708 38.6053 0.6728 

 587 

aStation code, which was assigned according to an increasing altitude. 588 

bPositive values: West; negative values: East, with respect to the Greenwich meridian.  589 

 590 

591 
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Table 2 592 

Summary overview of 3 PCA models: (i) Rs matrix with 1203 variables (‘all’), (ii) 593 

subset of 604 variables with an average Rs <200, and (iii) subset of 599 variables with 594 

an average Rs >200. These models were repeated after discarding station s19. 595 

Goodness-of-fit (R2
X), eigenvalue (λ), goodness-of-fit by cross-validation (Q2), and 596 

threshold value (Q2
limit). 597 

 598 

  PCA with 30 stations  PCA with 29 stations 

model PC R2
X λ Q2 Q2

limit  R2
X λ Q2 Q2

limit 

All 1 0.366 11.0 0.300 0.034  0.376 10.9 0.312 0.035 

All 2 0.129 3.86 0.097 0.035  0.138 4.01 0.120 0.036 

All 3 0.104 3.12 0.111 0.036  0.100 2.90 0.140 0.038 

All 4 0.061 1.83 0.041 0.038  0.057 1.67 0.070 0.039 

All 5 0.045 1.34 0.011 0.039  0.043 1.25 -0.038 0.041 

All 6 0.039 1.18 0.012 0.041  0.038 1.10 0.004 0.042 

Rs<200 1 0.380 11.4 0.322 0.035  0.389 11.3 0.334 0.036 

Rs<200 2 0.101 3.04 0.061 0.036  0.107 3.11 0.038 0.037 

Rs<200 3 0.096 2.87 0.076 0.037  0.098 2.84 0.125 0.039 

Rs<200 4 0.072 2.15 0.061 0.039  0.065 1.88 0.044 0.040 

Rs<200 5 0.047 1.41 -0.020 0.040  0.049 1.42 -0.059 0.042 

Rs<200 6 0.043 1.29 -0.007 0.042  0.045 1.30 0.028 0.043 

Rs>200 1 0.363 10.9 0.281 0.035  0.375 10.9 0.294 0.036 

Rs>200 2 0.156 4.69 0.153 0.036  0.165 4.79 0.192 0.037 

Rs>200 3 0.107 3.22 0.130 0.037  0.105 3.04 0.156 0.039 

Rs>200 4 0.057 1.70 -0.003 0.039  0.049 1.41 0.047 0.040 

Rs>200 5 0.042 1.26 0.026 0.040  0.042 1.21 -0.021 0.042 

Rs>200 6 0.038 1.14 -0.017 0.042  0.037 1.08 0.035 0.043 

 599 

600 
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Table 3 601 

PCA of the Rs matrix (29 stations, 1203 variables): goodness-of-fit (R2
X) and goodness-602 

of-fit by cross-validation (Q2) considering different gap sizes.  603 

 604 

 0% gaps  5% gaps  10% gaps  15% gaps 

PC R2
X Q2  R2

X Q2  R2
X Q2  R2

X Q2 

1 0.376 0.312  0.375 0.324  0.376 0.321  0.385 0.327 

2 0.138 0.120  0.139 0.123  0.142 0.126  0.140 0.120 

3 0.100 0.140  0.100 0.133  0.101 0.136  0.099 0.129 

4 0.057 0.070  0.058 0.042  0.058 0.043  0.059 0.048 

5 0.043 -0.038  0.044 0.005  0.044 -0.017  0.043 -0.013 

6 0.038 0.004  0.037 0.004  0.037 0.011  0.036 0.006 

605 
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Table 4 606 

Error parameters (eqs. 3 to 5) as performance indicators for several infilling methods 607 

and gap sizes: PCA approach based on 4 components (A), 1-neighbor (B), 2-neighbor 608 

(C), 1-neighbor-SP (D), and 2-neighbor-SP (E). 609 

 610 

 611 

gap size method MSE MAE AARE 

5% A 297.54 11.840 0.0814 

10% A 343.31 12.505 0.0931 

15% A 391.21 13.306 0.0949 

5% B 373.64 13.736 0.0857 

10% B 435.44 14.388 0.0959 

15% B 459.40 14.775 0.0944 

5% C 340.14 12.965 0.0834 

10% C 393.27 13.290 0.0910 

15% C 414.81 13.858 0.0912 

5% D 457.63 13.941 0.1070 

10% D 435.51 14.480 0.0941 

15% D 461.63 14.342 0.0994 

5% E 309.96 12.459 0.0861 

10% E 365.77 12.983 0.0969 

15% E 373.31 13.119 0.0925 

 612 

613 
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Table 5 614 

Error parameters (eqs. 3 to 5) as indicators of the goodness-of-fit for the reconstruction 615 

of the Rs matrix according to four different methods. 616 

 617 

method N MSE MAE AARE 

PCA a 

1 422.76 14.283 0.1135 

2 336.16 12.425 0.1015 

3 266.71 11.170 0.0870 

4 225.72 10.295 0.0767 

PCR b 

1 427.03 14.409 0.1142 

2 359.78 13.104 0.1049 

3 311.93 12.252 0.0923 

4 286.04 11.784 0.0853 

1-neighbor-SP - 425.19 14.044 0.0990 

2-neighbor-SP - 309.45 11.853 0.0842 

 618 

aRs matrix (centered values) reconstructed according to eq. 1 with an increasing number 619 

of components (N). 620 

bSame as the PCA method but ti scores were obtained using eqs. 6 to 9.  621 

 622 

 623 


